爱乐眼底图像分析

?找回密码
?立即注册

QQ登录

只需一步,快速开始

搜索
查看: 5717|回复: 1
打印 上一主题 下一主题

图像几何变换(缩放、旋转)中的插值算法

[复制链接]
跳转到指定楼层
楼主
发表于 2012-9-3 21:50:08 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

实践已证明,插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。

最邻近插值(近邻取样法):

最临近插值的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)对应的像素值。可见,最邻近插值简单且直观,但得到的图像质量不高。

双线性内插值:

对于一个目的像素,设置坐标通过反向变换得到的浮点坐标为(i+u,j+v),其中i、j均为非负整数,u、v为[0,1)区间的浮点数,则这个像素得值 f(i+u,j+v) 可由原图像中坐标为 (i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)所对应的周围四个像素的值决定,即:

  1. f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1)
复制代码

其中f(i,j)表示源图像(i,j)处的的像素值,以此类推。

这就是双线性内插值法。双线性内插值法计算量大,但缩放后图像质量高,不会出现像素值不连续的的情况。由于双线性插值具有低通滤波器的性质,使高频分量受损,所以可能会使图像轮廓在一定程度上变得模糊。

三次卷积法:

三次卷积法能够克服以上两种算法的不足,计算精度高,但计算亮大,他考虑一个浮点坐标(i+u,j+v)周围的16个邻点,目的像素值f(i+u,j+v)可由如下插值公式得到:


  1. f(i+u,j+v) = [A] * [B] * [C]
  2. [A]=[ S(u + 1) S(u + 0) S(u - 1) S(u - 2) ]
  3.   ┏ f(i-1, j-1) f(i-1, j+0) f(i-1, j+1) f(i-1, j+2) ┓
  4. [B]=┃ f(i+0, j-1) f(i+0, j+0) f(i+0, j+1) f(i+0, j+2) ┃
  5. ┃ f(i+1, j-1) f(i+1, j+0) f(i+1, j+1) f(i+1, j+2) ┃
  6. ┗ f(i+2, j-1) f(i+2, j+0) f(i+2, j+1) f(i+2, j+2) ┛
  7.   ┏ S(v + 1) ┓
  8. [C]=┃ S(v + 0) ┃
  9. ┃ S(v - 1) ┃
  10. ┗ S(v - 2) ┛
  11.    ┏ 1-2*Abs(x)^2+Abs(x)^3      , 0<=Abs(x)<1
  12. S(x)={ 4-8*Abs(x)+5*Abs(x)^2-Abs(x)^3 , 1<=Abs(x)<2
  13. ┗ 0              ??, Abs(x)>=2
复制代码

S(x)是对 Sin(x*Pi)/x 的逼近(Pi是圆周率——π)

最邻近插值(近邻取样法)、双线性内插值、三次卷积法 等插值算法对于旋转变换、错切变换、一般线性变换 和 非线性变换 都适用。



沙发
?楼主| 发表于 2012-9-3 21:50:17 | 只看该作者
补充:
一、对于24位DIB,需要分别对RGB分量进行处理;
二、对于f(x,y)中没有对应值的坐标,应该用最邻近坐标的值(比如f(-1,-1)用f(0,0)的值)。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则



QQ|Archiver|手机版|小黑屋|爱乐眼底图像分析 ( 京ICP备1201155号 )????? ?? ??

GMT+8, 2019-10-2 19:08 , Processed in 0.314697 second(s), 27 queries .

Powered by Discuz! X3.1

? 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表